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Abstract: We investigate the use of a Genetic Algorithm (GA) to design
a set of photonic crystals (PCs) in one and two dimensions. Our flexible
design methodology allows us to optimize PC structures for specific
objectives. In this paper, we report the results of several such GA-based PC
optimizations. We show that the GA performs well even in verycomplex
design spaces, and therefore has great potential as a robustdesign tool in a
range of PC applications.
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1. Introduction

Photonic crystals (PCs) describe a class of semiconductor structures with a periodic variation of
refractive index in 1, 2, or 3 dimensions. As a result, PCs possess a photonic band gap – a range
of frequencies in which the propagation of light is forbidden [1, 2]. This unique characteristic
of PCs enables them to be used to manipulate light. PCs have already been used for applications
such as modifying the spontaneous emission rate of emitters[3, 4], slowing down the group
velocity of light [5, 6], and designing highly efficient nanoscale lasers [7].

Given that photonic crystals find applications in a myriad ofareas, we proceed to investigate
the question:What is the best possible manufacturable PC design for a given application?Man-
ufacturability refers to the ability to realize the structure with standard tools such as electron
beam lithography. Traditionally, photonic crystal designs have been optimized largely by either
trial-and-error, iterative searches through a design space, by physical intuition, or some com-
bination of the above methods [8, 9]. However, such methods of design have their limitations,
and recent developments in PC design optimization have instead taken on a more systematic
and algorithmic nature [10, 11, 12, 13]. In this work, we report the results of a Genetic Algo-
rithm (GA) to optimize the design of a set of one and two-dimensional PC structures. We show
that the GA can effectively optimize PC structures for any given design objective, and is thus a
highly robust and useful design tool.

2. Genetic algorithms

Genetic algorithms (also known as Evolutionary algorithms) are a class of optimization algo-
rithms that apply principles of natural evolution to optimize a given objective [14, 15, 16]. In
the genetic optimization of a problem, different solutionsto the problem are picked (usually
randomly), and a measure of fitness is assigned to each solution. On a given generation of the
design, a set of operations, analogous to mutation and reproduction in natural selection, are per-
formed on these solutions to create a new generation of solutions, which should theoretically
be “fitter” than their parents. This process is repeated until the algorithm terminates, typically
after a pre-defined number of generations, or after a particularly “fit” solution is found, or more
generally, when a generation of solutions meets some pre-defined convergence criterion. In
general, GA’s are best suited to problems which have a low computational cost for each fitness
evaluation.
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3. Implementation

Genetic algorithms have already been used in PC design to findnon-intuitive large-bandgap
designs [12, 17] and for designing PC fibers [18]. In this work, we implement a general GA
to optimize 1 and 2-dimensional photonic bandgap structures, and show that it is able to ro-
bustly optimize these structures for a wide variety of objectives. In the 1-dimensional case,
we consider the design of planar photonic crystal cavities by varying the widths of dielectric
stacks, accounting for the remaining spatial dimensions via an effective index model; in the
2-dimensional case, we perform the genetic optimization byvarying the sizes of circular holes
in a triangular lattice. These approaches were chosen because the search space is conveniently
well-constrained in these paradigms, and the optimized structures (for the triangular lattice) can
be easily fabricated.

In our genetic algorithm, the variables to be optimized (stack widths in 1D, hole radii in 2D)
were directly stored in a vector, called a chromosome. Each chromosome therefore compactly
represents a dielectric structure to be simulated. Our implementation can be easily modified to
optimize over other types of variables as well, such as the positions of the various holes, or the
refractive index of the dielectric material.

To propagate a new generation of chromosomes from the current generation, we used the
following steps:

Selection.We used fitness-proportionate selection (also known as roulette-wheel selection),
to choose parent chromosomes for mating. In this selection scheme, a chromosome is
selected out of N chromosomes with a probabilityPi that is proportional to its fitnessfi ,
as shown in Eq. (1).

Pi =
fi

N

∑
k=1

fk

(1)

Mating. After a pair of parent chromosomesvparent,1 andvparent,2 were selected, they were
mated to produce a child chromosomevchild by taking a random convex combination of
the parent vectors, as in Eq. (2).

λ ∼ U(0,1)

~vchild = λ~vparent,1 +(1−λ )~vparent,2 (2)

Mutation. Mutation was used to introduce diversity in the population.We used two types of
mutation in our simulations, a random-point crossover and aGaussian mutation.

1) Random-point crossover: For an original chromosome vector~vorig of lengthN, we
selected a random index,k, from 0 toN−1 as the crossover point, and swapped the two
halves of~vorig to produce the mutated vector,~vmut, as represented in Eq. (3).

~vorig = (v1,v2, . . . ,vN)T

k ∼ U{0,1,2, ....,N−1}
~vmut = (vk+1,vk+2, . . . ,vN,v1,v2, . . . ,vk−1)

T (3)

2) Gaussian mutation: To mutate a chromosome vector by Gaussian mutation, we define
each element of~vmut to be independent and identically distributed Gaussian Random
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Variables with mean~vorig and standard deviation ofσ . This searches the space in the
vicinity of the original chromosome vector~vorig.

vmut
i ∼ N

(

vorig
i ,σ2

)

, i ∈ {1,2, ....,N} (4)

σ2 is an algorithm-specific variance, and can be tuned to changethe extent of parameter-
space exploration due to mutation.

Cloning. To ensure that the maximum fitness of the population does not decrease, we copied
(cloned) the top few chromosomes with the highest fitness in each generation and inserted
them into the next generation.

4. Genetic optimization results

4.1. Optimizing planar photonic crystal cavities

4.1.1. Q-factor maximization

One problem of interest in PC design is the inverse problem, where one tries to find a dielectric
structure to confine a given (target) electromagnetic mode [10]. Here we consider the inverse
design problem of optimizing a linear-defect cavity in a planar photonic crystal cavity. TheQ-
factor is a common figure of merit measuring how well a cavity can confine a given mode, and
can be approximated (assuming no material absorption) by the following expression:

1
Qtotal

=
1

Q||
+

1
Q⊥

(5)

whereQ|| represents theQ-factor in the direction parallel to the slab, andQ⊥ represents
the Q-factor perpendicular to the slab.Q⊥ is usually the limiting factor forQtotal. As was
shown previously [10, 20], the vertical mode confinement, which occurs through total internal
reflection (TIR), can be improved if the mode has minimal k-space components inside the light
cone.

In the subsequent sections, we report the results for using the GA to minimize the light
cone radiation of such cavities. We used one-dimensional photonic crystals as approximations
to these cavities [21], and simulated them using the standard Transfer Matrix method for the
E-field [22]. The reflectance spectrum of each cavity was obtained using the Transfer Matrix
method, and we used a heuristic peak-finding algorithm to automatically search the spectrum
for sharp resonance peaks. The resulting resonant modes were then evaluated according to
the chosen fitness function (which differed depending on ouroptimization objective), and the
maximum fitness found from all the resonant modes was assigned as the fitness for the particular
cavity.

4.1.2. Matching to a target function

In [10] it was noted that minimization of light cone radiation could be performed via mode-
matching to a target function which already possessed such aproperty. We therefore used a
fitness function that was equal (up to a normalizing factor) to the reciprocal of the mean-squared
difference between our simulated mode and a target mode (seeEq (6)). For this simulation, our
chromosome encoded the thicknesses of the dielectric slabsin the structure, and was a vector
of length 10. We used 100 chromosomes in each generation and allowed them to evolve for
80 generations. Since each dielectric slab was “stacked” above the previous slab, the distances
between the centers of the slabs were implicitly coded within our chromosome. We used an
alternating piecewise constant dielectric distribution,which varied betweennlow = 1 andnhigh =
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Fig. 1. Top-left: Real-space mode profile after optimizing for closest-match to a sinc-
envelope target mode.Top-right: k-space mode profile of the optimized simulated mode
and a sinc-envelope target mode.Bottom: Real-space and k-space mode profiles for match-
ing against a sinc2-envelope target mode.All: Red curves represent the real-space (k-space)
mode profiles of the optimized fields, blue curves represents the real-space (k-space) mode
profiles of the target fields. The horizontal axes of the k-space plots are in units ofπ/a,
wherea = 20 computational units.

3.17. The value ofnhigh is an effective refractive index that approximates a true refractive index
of a finite-width structure, as will be shown in Section 4.1.4.

f itness∝
{

∫ ∞

−∞
| fsim(x)− ftarget(x)|2dx

}−1

(6)

We used target modes that were sinusoidal functions multiplied by sinc andsinc-squared
envelope respectively, which have square and triangular Fourier Transform patterns with no
components inside the light cone. Such target modes can havetheoretically no radiation in the
direction perpendicular to the slab and are therefore idealcandidates as target functions. The
results, shown in Fig. 1, clearly feature a suppression of k-vector components at low spatial-
frequencies. Matching using the thesinc-squaredenvelope target function produced better re-
sults. From the k-space plots, the GA evidently had difficulty matching the sharp edges for the
sinc-envelope target mode.

4.1.3. Direct minimization of light cone radiation

In the preceding subsection, we observed that when we formulated our objective as a matching
problem, in the case of thesinc-envelope, the GA sacrificed the desired low spatial-frequency
suppression in an effort to match the overall shape of the function. The preceding formulation
therefore poses an implicit constraint on our optimization. By reformulating the optimization
problem, we were able to effectively remove this constraint, and obtain a better result.
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Fig. 2.Top: Real-space mode profile of optimized resonant E-field mode using direct light-
cone minimization.Bottom: Corresponding k-space mode profile of optimized mode.

Our reformulation directly minimized the k-vector components in the light cone, by min-
imizing the integrated square-magnitude of the simulated E-field mode in k-space inside the
light cone. The fitness function used here is given as in Eq (7), whereV represents the set of
k-vectors within the light cone, andF(k) is the Fourier Transform of the field.

f itness=

{

∫

V
|F(k)|2dk

}−1

(7)

The final, evolved structure, together with the corresponding real-space and k-space mode
profiles are shown in Fig 2. The k-space mode profile features astrong suppression of radiation
at low frequencies, to a greater extent as compared to the optimized fields from the preced-
ing simulations. By relaxing our constraint and performinga direct optimization, our GA has
designed a structure that achieves better light cone suppression than before. Our direct opti-
mization paradigm has exploited the extreme generality of the GA, which simply requires that
a fitness function be defined, with little further constraintthereafter.

4.1.4. 2D design verification

In order to verify our design, we used a 2-dimensional Finite-Difference-Time-Domain (FDTD)
simulation to compare our GA-optimized design against a standard uniform quarter-wave-stack
cavity. We used the standard effective index approximation[23] for uniform slab waveguides
to translate our 1-dimensional design (effective nhigh = 3.17) to a 2-dimensional finite-width
design (true nhigh = 3.30). Our 2-dimensional cavity therefore has a “slab-waveguide” structure,
with a periodic modulation of the dielectric. The uniform cavity comprises a dielectric spacer of
thicknessλ/2nhigh with 9 quarter-wave stacks placed symmetrically on each side of the spacer.
The number of stacks were chosen so that both the uniform cavity and our GA-optimized cavity
have the same number of stacks on each side of the central spacer.

To isolate the out-of-planeQ-factors, we progressively increased the number of quarter-
wave-stacks for both the GA-optimized cavity and the uniform cavity, and recorded the overall
Q-factors. In general, as the number of additional stacks increases, the in-plane confinement of
the mode improves, and the overallQ-factor converges to the out-of-planeQ-factor. There was
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Fig. 3. Top: Electric field amplitude of the resonant mode in a slab-waveguide uniform
quarter-wave-stack cavity, with a half-wavelength thick central spacer, with Q= 85.Bottom:
Electric field amplitude of the resonant mode of our GA-optimized cavity, withQ = 6510.
The modal shape at the slab center closely resembles the modal profile of our 1D simulation
in Fig 2. In FDTD program units, the widths of the high-index layers (startingfrom the
central spacer) wererhigh = {16, 7, 10, 9, 9, 16, 6, 5, 13, 7} and the widths of the air gaps
were r low = {9, 10, 10, 10, 9, 7, 6, 6, 7}. Both: The thickness of both structures in the
vertical direction were fixed at 40 units, and refractive indices arenhigh = 3.30 andnlow =
1.

no significant increase in overallQ-factor for either design after adding four additional stacks.
The out-of-planeQ-factor for the uniform cavity design converged to a value of85, while the
out-of-planeQ-factor for our GA-optimized design converged to 6510, surpassing the uniform
cavity design by nearly two orders of magnitude. The resulting E-field amplitudes of the res-
onant modes for both designs are shown in Fig 3. While the uniform cavity displays excellent
in-plane modal confinement, it simultaneously exhibits large out-of-plane losses. The authors
of Ref [24] noted that this effect was particularly significant for structures with high index ra-
tios, as we have here. Conversely, our GA-optimized cavity effectively trades in-plane modal
confinement for a better out-of-plane confinement, leading to a larger overallQ-factor.

Fig. 4.Left: Tiled unit cells in a hexagonal lattice.Right: Enlarged unit cell, showing the
hexagonal arrangement of the nine air holes within each unit cell. The radii of the nine
holes are used to encode the chromosomes in our optimization. The white holes with the
dotted outlines are not part of the displayed unit cell, but belong to the adjacent cells.Top:
Brillouin zone (white hexagon), irreducible Brillouin zone (blue triangle) and Γ, K, and
M reciprocal lattice points. The Brillouin zone has the same shape as that ofa regular
triangular lattice (i.e. a hexagon). However, since the lattice constants in thereal-space
lattice are longer by a factor of 3 than those of the underlying triangular lattice(as a result
of the supercell), the reciprocal-space vectors are correspondinglyshorter by a factor of 3.
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4.2. Maximal gap at any k-vector point

Moving on to the more general case of 2D photonic crystals, weshow the results of simulations
for maximizing the TE bandgap at any point in k-space for a 2-Dimensional PC structure with
a triangular lattice of air holes. This could be useful for PCdesign applications where the target
mode to be confined is centered around a particular point in k-space [10]. By maximizing the
bandgap at that k-space point, we would effectively design abetter mirror for a mode resonating
along this k-space direction.

We used a supercell which was three periods wide in each dimension (see Fig. 4). We then
varied the radii of the nine holes in total, and we encoded thechromosome as a vector of these
nine holes. The position of the hole centers were held constant, each spaced apart by one period
of the standard triangular lattice. We constrained our search space by restricting each hole’s
radius to be less than half a period of the single-hole lattice. This was done to prevent holes
from overlapping with each other. A refractive index ofnhigh=3.45 was used for the dielectric
material, and unity for the refractive index of air. We used apopulation size of 60 chromosomes
for each generation, and allowed the optimization to run fora total of 100 generations. We
applied Gaussian mutation to 23 of the 60 chromosomes in eachgeneration, withσ = 0.45a.
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Fig. 5. Fitness (gap-to-midgap ratio at K-point of the band diagram) of maximally-fit struc-
ture of each generation for 100 generations. Each line in this figure represents one simula-
tion run of our algorithm. Different runs of the algorithm take different optimization paths,
but eventually converge to an optimal solution within approximately 80 generations. The
maximum fitness is a monotonically non-decreasing function due to cloning (see section
3). A general increase in fitness arises as a result of various genetic operations (selection,
mating, mutation).

4.2.1. Maximizing the K-point gap

To evaluate the fitness of each chromosome, we used the eigensolver in Ref [19] to calculate
the frequencies of the first 10 bands at the K-point in the reciprocal lattice. Next, we extracted
the largest bandgap (calculated as the gap-to-midgap ratio) from these 10 bands. We then scaled
the calculated ratio exponentially to tune the selection pressure of the optimization. Figure 5
shows the variation of the gap-to-midgap ratio of our structures as the algorithm progressed.

Our Genetic Algorithm performs as expected, and we get a general increase of fitness as the
algorithm progresses. All the four runs do not show any significant increase in fitness after Gen-
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eration 80, at which point they have maximum fitnesses (i.e. ratio of their bandgap to midgap
value) of around 72%. In comparison, a standard uniform triangular lattice, with only one hole
per unit cell, has a maximum K-point gap of 53%, achieved whenr/a = 0.4445 (maximized by
Brent’s algorithm [25]). All the optimized structures havesimilar dielectric structures and band
diagrams; the structures in each of the four runs only differfrom each other by a translational
shift. The dielectric structures and a sample band diagram are shown in Figure 6. The predicted
dielectric structures have, on average, 3 holes per unit cell which have maximum radius (0.5a)
and 6 holes with negligible radii.

Due to the expansion of the 3 holes and concurrent shrinking of the remaining 6 holes, the
superlattice also exhibits discrete translational symmetry in a uniform (albeitlarger) triangular
lattice with periodicity 3a. This verifies that the optimal structure for maximizing theK-point
gap is still a triangular lattice.

4.2.2. Maximizing the M-point gap

To confirm our results, we ran the GA again, this time optimizing the gap at the M-point of
the band diagram. Figure 7 shows the results of the optimization. The GA-optimized structures
contain, on average, 6 holes per unit cell with large radii close to the upper bound (0.5a), and 3
holes with negligible radii. When tiled, the structures appear similar to dielectric waveguides.
The M-point gap of the GA-designed structures were about 64%, surpassing the best M-point
gap of 55% possessed by a triangular lattice of r/a = 0.4045 (maximized by Brent’s algorithm).
Furthermore, we also observe that maximization of the M-point gap comes at the expense
of decreasing the K-point gap. These results make intuitivesense, since the waveguide-like
structures have a large index contrast in the vertical direction, and therefore can be expected to
be vertically well-confined in the M direction, corresponding to a large gap at the M-point.

4.3. Optimal dual PC structures

As a more complex example, let us consider two similar PC designs, (1) a triangular lattice of
air holes in a dielectric slab, and (2) a triangular lattice of dielectric rods in air. Structure (1)
possesses a bandgap for TE light, but no bandgap for TM light,while structure (2) possesses a
bandgap for TM light, but not for TE light.

Our objective is to use the Genetic Algorithm to find a PC design in which the TE eigenmode
for structure (1) and the TM eigenmode for structure (2) are most similar. Maxwell’s equations
can be cast as eigenproblems for the electric or magnetic fields, and our approach could be
potentially useful in future PC design, because solving theinverse problem is analytically sim-
pler (at least intuitively) for the eigenproblem involvingtheE-field, or for translating TE-like
solutions to TM-like solutions.

We used a 3x3 supercell for the optimization, and we minimized the mean-square difference
of the z-components of the electric and magnetic fields of thedual structures (oriented along
the holes/rods) at the K-point of the band diagram. We encoded the chromosomes as in section
4.2, as a vector of length 9, bounded in the same way as well. However, in this case, each
component of the chromosome vector representsboththe hole radii in structure (1) and the rod
radii in structure (2). This ensures that both structures are indeed dual to each other, having an
identical geometric arrangement, but with flipped dielectric distributions. We recognizea priori
that a trivial solution, which we wish to avoid, is a structure that has a uniform refractive index
(either dielectric or air) throughout, and so we prevent thegenetic algorithm from obtaining
this by restricting our mutation to only a Gaussian mutation(see Eq. 4). This preferentially
searches the locality of points, and is a necessary trade-off for obtaining a reasonable solution.
This illustrates the versatility of the Genetic approach - the extent of the search can be easily
modified by a simple change of algorithm parameters. Fig. 8 shows the optimal dual structures
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Run Dielectric structure Unit cell hole radii, from

top left

Run 1

r/a ={0.00, 0.00,

0.50, 0.50, 0.00, 0.00,

0.00, 0.50, 0.01}

Run 2

r/a ={0.00, 0.00,

0.50, 0.50, 0.00, 0.00,

0.00, 0.50, 0.00}

Run 3

r/a ={0.50, 0.00,

0.00, 0.00, 0.50, 0.00,

0.00, 0.00, 0.50}

Run 4

r/a ={0.00, 0.50,

0.00, 0.00, 0.00, 0.50,

0.50, 0.00, 0.00}

(a) Table of simulation runs

(b) Enlarged unit cell
for run 4. The 9 or-
ange dots show the
positions of the hole
centers. 6 of the 9
holes are “missing”,
having been shrunk to
0 radii by the opti-
mization.

(c) Band Diagram - maximized K-point gap (d) Band Diagram - uniform holes, r/a = 0.4445

Fig. 6. Table (a) shows the optimal PC structures predicted by 4 runs of our Genetic Al-
gorithm. The unit cell for each structure is depicted by the yellow boundingbox with di-
mensions 3a x 3

√
3a/2, and the unit cell hole radii are listen in the third column. A sample

band diagram (for Run 4) is shown in (c). The optimized K-point TE gap, calculated as the
ratio of the size of the gap to the midgap value, was found to be≃ 72%. More bands are
shown in (c) to account for the folding of bands due to the supercell. The corresponding
K-point gap for a triangular lattice with uniform air holes (r/a = 0.4445) is shown in (d) for
reference. The band diagram for the uniform triangular lattice (d) was calculated without a
supercell approximation, so the unit cell is three times smaller than for (c). This also im-
plies that the normalized frequencies at the band gap are three times larger, and k-segments
on the horizontal axis are three times bigger than for (c).
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Run Dielectric structure Unit cell hole radii, from

top left

Run 1

r/a ={0.50, 0.50,

0.50, 0.50, 0.50, 0.50,

0.00, 0.00, 0.00}

Run 2

r/a ={0.50, 0.50,

0.47, 0.50, 0.50, 0.50,

0.00, 0.00, 0.00}

Run 3

r/a ={0.50, 0.43,

0.50, 0.50, 0.50, 0.50,

0.01, 0.00, 0.00}

Run 4

r/a ={0.50, 0.50,

0.50, 0.50, 0.50, 0.50,

0.00, 0.00, 0.00}

(a) Table of simulation runs

(b) Enlarged unit cell
for run 4. The 9 or-
ange dots show the
positions of the hole
centers. 3 of the 9
holes are “missing”,
having been shrunk to
0 radii by the opti-
mization.

(c) Band Diagram - maximized M-point gap (d) Band Diagram - uniform holes, r/a = 0.4045

Fig. 7. Table (a) shows the PC structures with a maximized M-point gap, predicted by
4 runs our Genetic Algorithm for unit cells (yellow boxes) with size 3a x 3

√
3a/2 for

all four runs. (c) shows a sample band diagram (for Run 4). The GA-designed structures
have a maximized M-point gap of 64%, which is higher than the M-point gapof 55%
of a reference uniform triangular lattice (d). The uniform triangular lattice band diagram
(d) was calculated without a supercell approximation, so k-space segments shown on the
horizontal axis are 3 times larger than for (c), and normalized frequencies are also 3 times
larger than for (c).
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(a) Band 1, E-field (b) Band 1, H-field

(c) Band 2, E-field (d) Band 2, H-field

(e) Band 3, E-field (f) Band 3, H-field

(g) Band 4, E-field (h) Band 4, H-field

Fig. 8. Genetic Algorithm prediction of PC structures that have optimally matched E and
H fields, for the lowest 4 bands, at the K point. The E-fields are shown for structures with
dielectric rods, that have a TM bandgap, while the H-fields are shown forstructures with
air holes, that have a TE bandgap. The displayed fields are in the directionaligned with
the rods. The fields for the lowest 3 bands are very well matched, but begin to deviate
significantly from each other at band 4.
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with the corresponding simulated fields. The GA clearly converges onto structures that exhibit
close similarity between TE and TM confinement. The higher frequency bands begin to deviate
because the larger extent of modal variation over the unit cell makes it harder to find a good
match.

5. Conclusion

We have shown that our Genetic Algorithm is able to effectively optimize PC designs to meet
specific design criteria. Specifically, we applied the GA to three particular problems. In 1D
cavity simulations, the GA improved vertical cavity confinement by almost two orders of mag-
nitude compared to standard equal-index-spacing designs.We also applied the GA to a 2D
triangular lattice to maximize the bandgap at the K-point and M-point of the band diagram. Fi-
nally, we use the GA to design symmetric 2D triangular lattice structures that support dual TE
and TM modes. Furthermore, by our choice of encoding, we could easily impose constraints
upon the design space to ensure that every design searched bythe algorithm could be realisti-
cally fabricated. Between different optimizations, we only need to change the “fitness function”,
which measures how closely a given structure complies with our design criteria. Our Genetic
Algorithm is therefore highly robust and can be easily modified to optimize any user-defined
objective function.
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